times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, s1(z))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(s1(z), 0)
TIMES2(x, s1(y)) -> TIMES2(x, y)
TIMES2(x, s1(y)) -> PLUS2(times2(x, y), x)
TIMES2(x, plus2(y, s1(z))) -> PLUS2(y, times2(s1(z), 0))
PLUS2(x, s1(y)) -> PLUS2(x, y)
TIMES2(x, plus2(y, s1(z))) -> PLUS2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, s1(z))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(s1(z), 0)
TIMES2(x, s1(y)) -> TIMES2(x, y)
TIMES2(x, s1(y)) -> PLUS2(times2(x, y), x)
TIMES2(x, plus2(y, s1(z))) -> PLUS2(y, times2(s1(z), 0))
PLUS2(x, s1(y)) -> PLUS2(x, y)
TIMES2(x, plus2(y, s1(z))) -> PLUS2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
PLUS2(x, s1(y)) -> PLUS2(x, y)
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(x, s1(y)) -> PLUS2(x, y)
POL(PLUS2(x1, x2)) = 2·x2
POL(s1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, s1(z))
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, s1(y)) -> TIMES2(x, y)
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, s1(z))
Used ordering: Polynomial interpretation [21]:
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, s1(y)) -> TIMES2(x, y)
POL(0) = 0
POL(TIMES2(x1, x2)) = x2
POL(plus2(x1, x2)) = 1 + x1 + x2
POL(s1(x1)) = x1
POL(times2(x1, x2)) = x1
times2(x, 0) -> 0
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, s1(y)) -> TIMES2(x, y)
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES2(x, plus2(y, s1(z))) -> TIMES2(x, plus2(y, times2(s1(z), 0)))
TIMES2(x, s1(y)) -> TIMES2(x, y)
POL(0) = 0
POL(TIMES2(x1, x2)) = 2·x2
POL(plus2(x1, x2)) = x1 + x2
POL(s1(x1)) = 1 + x1
POL(times2(x1, x2)) = 0
times2(x, 0) -> 0
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
times2(x, plus2(y, s1(z))) -> plus2(times2(x, plus2(y, times2(s1(z), 0))), times2(x, s1(z)))
times2(x, 0) -> 0
times2(x, s1(y)) -> plus2(times2(x, y), x)
plus2(x, 0) -> x
plus2(x, s1(y)) -> s1(plus2(x, y))